首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1258篇
  免费   322篇
  国内免费   226篇
测绘学   3篇
大气科学   2篇
地球物理   682篇
地质学   608篇
海洋学   42篇
天文学   20篇
综合类   25篇
自然地理   424篇
  2023年   14篇
  2022年   21篇
  2021年   49篇
  2020年   54篇
  2019年   58篇
  2018年   58篇
  2017年   37篇
  2016年   64篇
  2015年   45篇
  2014年   60篇
  2013年   64篇
  2012年   57篇
  2011年   61篇
  2010年   51篇
  2009年   57篇
  2008年   96篇
  2007年   99篇
  2006年   110篇
  2005年   92篇
  2004年   92篇
  2003年   63篇
  2002年   55篇
  2001年   41篇
  2000年   51篇
  1999年   37篇
  1998年   37篇
  1997年   31篇
  1996年   37篇
  1995年   27篇
  1994年   40篇
  1993年   23篇
  1992年   22篇
  1991年   28篇
  1990年   22篇
  1989年   12篇
  1988年   11篇
  1987年   9篇
  1986年   10篇
  1985年   3篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   3篇
  1973年   1篇
  1954年   1篇
排序方式: 共有1806条查询结果,搜索用时 312 毫秒
71.
Summary A new, practically applicable method for characterizing the stiffness anisotropy of rocks is presented. The anisotropy of geo-materials is often ignored in engineering applications, with potentially serious ramifications, because of the number of parameters required for characterization. The elastic anisotropy has often been considered to be a function of mathematical symmetry, and the restrictions due to layering, microcracking and granularity of the materials have not been considered in the assessment of the anisotropy. The practicality of the method proposed here is achieved by rationally reducing the number of independent anisotropy parameters, typically 9 for orthotropic anisotropy, to a system of 4 independent parameters through a systematic theoretical and experimental analysis of these structural restrictions. These 4 parameters are shown to be sufficient for describing the anisotropy of some rocks and sands at small strains, and parameter determination by back-analysis is demonstrated to be stable using appropriate measurement systems involving 9 elastic wave velocities even when the directions of anisotropic axes are unknown and the velocity data contains appreciable error.  相似文献   
72.
The present work proposes an approach to adapt existing isotropic models to transversely isotropic materials. The main idea is to introduce equivalence relations between the real material and a fictitious isotropic one on which one can take all the advantages of the well‐established isotropic theory. Two applications of this approach are presented here: a failure criterion and a damage model that takes into account the load‐induced anisotropy. In both cases, theoretical predictions are in agreement with the experimental data. In the present paper, the developed approach is applied to sedimentary rock materials; nevertheless, it can be generalized to any material that exhibits transverse isotropy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
73.
This work describes a constitutive framework for modeling the behavior of rough joints under cyclic loading. Particular attention is paid to the intrinsic links between dilatancy, surface degradation, and mobilized shear strength. The framework also accounts for the important effect of shear‐induced anisotropy. The resulting approach is fully three‐dimensional and is not restricted to plane‐displacement kinematics. Both the governing formulation and an algorithm for implicit numerical integration are presented. While the proposed methods are general, we also postulate a specific model that is compared with experimental data. It employs relatively few free parameters but shows good agreement with laboratory tests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
74.
Previous work on three‐dimensional shakedown analysis of cohesive‐frictional materials under moving surface loads has been entirely for isotropic materials. As a result, the effects of anisotropy, both elastic and plastic, of soil and pavement materials are ignored. This paper will, for the first time, develop three‐dimensional shakedown solutions to allow for the variation of elastic and plastic material properties with direction. Melan's lower‐bound shakedown theorem is used to derive shakedown solutions. In particular, a generalised, anisotropic Mohr–Coulomb yield criterion and cross‐anisotropic elastic stress fields are utilised to develop anisotropic shakedown solutions. It is found that shakedown solutions for anisotropic materials are dominated by Young's modulus ratio for the cases of subsurface failure and by shear modulus ratio for the cases of surface failure. Plastic anisotropy is mainly controlled by material cohesion ratio, the rise of which increases the shakedown limit until a maximum value is reached. The anisotropic shakedown limit varies with frictional coefficient, and the peak value may not occur for the case of normal loading only. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
75.
The paper describes and evaluates an incremental plasticity constitutive model for unsaturated, anisotropic, nonexpansive soils (CMUA). It is based on the modified Cam-Clay (MCC) model for saturated soils and enhances it by introducing anisotropy (via rotation of the MCC yield surface) and an unsaturated compressibility framework describing a double dependence of compressibility on suction and on the degree of saturation of macroporosity. As the anisotropic and unsaturated features can be activated independently, the model is downwards compatible with the MCC model. The CMUA model can simulate effectively: the dependence of compressibility on the level of developed anisotropy, uniqueness of critical state independent of the initial anisotropy, an evolving compressibility during constant suction compression, and a maximum of collapse. The model uses Bishop's average skeleton stress as its first constitutive variable, favouring its numerical implementation in commercial numerical analysis codes (eg, finite element codes) and a unified treatment of saturated and unsaturated material states.  相似文献   
76.
The Simplon Fault Zone is a late-collisional low-angle normal fault (LANF) of the Western Alps. The hanging wall shows evidence of brittle deformation only, while the footwall is characterized by a c. 1 km-thick shear zone (the Simplon Fault Zone), which continuously evolved, during exhumation and cooling, from amphibolite facies conditions to brittle-cataclastic deformations. Due to progressive localization of the active section of the shear zone, the thermal-rheological evolution of the footwall resulted in a layered structure, with higher temperature mylonites preserved at the periphery of the shear zone, and cataclasites occurring at the core (indicated as the Simplon Line). In order to investigate the weakness of the Simplon Line, we studied the evolution of brittle/cataclastic fault rocks, from nucleation to the most mature ones. Cataclasites are superposed on greenschist facies mylonites, and their nucleation can be studied at the periphery of the brittle fault zone. This is characterized by fractures, micro-faults and foliated ultracataclasite seams that develop along the mylonitic SCC′ fabric, exploiting the weak phases mainly represented by muscovite and chlorite. Approaching the fault core, both the thickness and frequency of cataclasite horizons increase, and, as their thickness increases, they become less and less foliated. The fault core itself is represented by a thicker non-foliated cataclasite horizon. No Andersonian faults or fractures can be found in the footwall damage zone and core zone, whilst they are present in the hanging wall and in the footwall further from the fault. Applying a stress model based on slip tendency, we have been able to calculate that the friction coefficient of the Simplon Line cataclasites was <0.25, hence this fault zone is absolutely weak. In contrast with other fault zones, the weakening effect of fluids was of secondary importance, since they accessed the fault zone only after an interconnected fracture network developed exploiting the cataclasite network.  相似文献   
77.
With the aid of integral transform techniques, this paper presents an extended precise integration solution for thermal consolidation problems of a multilayered porous thermo-elastic medium with anisotropic thermal diffusivity and permeability due to a heat source. From the fundamental governing equations, ordinary differential equations are derived by employing Laplace–Hankel transforms. By applying the extended precise integration method, equations in the transformed domain can be solved, and the actual solutions are further obtained by adopting a numerical inverse transformation. The accuracy and feasibility of the proposed theory is demonstrated by contrastive analysis with existing studies. Finally, several examples are carried out to investigate the influence of heat source’s type, axial distance, burial depth of heat source, ratio of thermo-permeability, permeability anisotropy, thermal diffusivity anisotropy and stratification on the thermal consolidation process.  相似文献   
78.
基于北京遥测技术研究所机载波谱仪实测数据以及ECMWF提供的风场数据,分析了不同风速条件下小入射角海浪平均后向散射系数不对称性与各向异性随入射角的变化特性,并对导致这一现象的原因进行了初步分析。结果表明:小入射角下,海浪平均后向散射系数随入射角增大呈现递减趋势并在18°时达到某一稳定值,之后基本维持不变;海浪后向散射系数不对称性与各向异性均随入射角增大呈现递增趋势,同样在18°增大至某一稳定值,之后基本维持不变;低风速条件下,海浪不对称性和各向异性与风速有关,且风速越大不对称性与各向异性越明显。  相似文献   
79.
The formation of an anisotropic landscape is influenced by natural and/or human processes, which can then be inferred on the basis of geometric indices. In this study, two minimal bounding rectangles in consideration of the principles of mechanics (i.e. minimal width bounding (MWB) box and moment bounding (MB) box) were introduced. Based on these boxes, four novel shape indices, namely MBLW (the length-to-width ratio of MB box), PAMBA (area ratio between patch and MB box), PPMBP (perimeter ratio between patch and MB box) and ODI (orientation difference index between MB and MWB boxes), were introduced to capture multiple aspects of landscape features including patch elongation, patch compactness, patch roughness and patch symmetry. Landscape pattern was, thus, quantified by considering both patch directionality and patch shape simultaneously, which is especially suitable for anisotropic landscape analysis. The effectiveness of the new indices were tested with real landscape data consisting of three kinds of saline soil patches (i.e. the elongated shaped slightly saline soil class, the circular or half-moon shaped moderately saline soil, and the large and complex severely saline soil patches). The resulting classification was found to be more accurate and robust than that based on traditional shape complexity indices.  相似文献   
80.
Estimation of uniaxial compressive strength (UCS) by P-wave velocity (VP) is of great interest to geotechnical engineers in various design projects. The specimen diameter size is one of the main factors that influence rock parameters such as UCS and VP. In this study, the diameter size of specimens that effect UCS and VP is investigated. Moreover, the correlation between UCS and VP are examined via empirical analysis. For this purpose, 15 travertine samples were collected and core specimens with a diameters size of 38, 44, 54, 64 and 74 mm were prepared. Then, uniaxial compressive strength and P-wave velocity tests were conducted according to the procedure suggested by ISRM (1981). It is concluded that the diameter size of the specimen has a significant effect on UCS and VP. Moreover, it was found that the best correlation between relevant parameters obtained for the specimen diameter of 38 mm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号